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Motivating example

Two-level system { ® o

1 memory state, 3 time-steps
= =1 = =1
loi= :

p 1-p I {3 :

Classical probabilistic description
of the system’s state

Flip operation = 2 memory state, 2 time-steps
A Al . 1 . L 1
. . . . . I I |:> |- _i I I
Markovian time-continuous flip operation? |_ ERN L
Impossible with classical probabilities -1
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Motivating example

Markovian time-continuous flip operation possible via quantum evolution

o — |0> | — |1> ‘T

= p[0X0] + (1 = p) [1)X1

Questions:

1. Can we simulate classical processes requiring memory with quantum memoryless dynamics?
2. Beyond yes/no answer: can we get some quantum memory advantages?

3. Can we employ those advantages in control theory?
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Classical and quantum embeddability

Py P ... P ld\
: : Poy Py ... Py
Stochastic evolution of a d-level system: P = , ) _ _ , P >0, Y . Pjj=1
\Ps Pw ... Pu)
Embeddable stochastic matrices: %P(t) = L(t)P(t), P(0)=1
Generator of the evolution: Li; >0fori#j, > .Lij=0

For time-independent generator it means: P(t) = et / P(1) =€l
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Classical and quantum embeddability

Embeddability problem introduced in 1937 by Elfving
G. Elfving, Zur theorie der Markoftfschen ketten, Acta Soc. Sci. Fennicae, n. Ser. A2 8, 1-17 (1937).

After more than 80 years still unsolved for d>3!

Known necessary conditions

G. Goodman, An intrinsic time for non-stationary finite Markov Hz P, i = det P >0 O
chains, Probab. Theory Relat. Fields 16, 165-180 (1970). Q_ O
Clockwise
Two-level dynamics Three-level circulant dynamics
(total probability to stay larger than to change)
a 1-b a b c
P = ; P=1c a b
1l —a b ’ O
b ¢ a O N
o O
Anti-clockwise
Stay
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Classical and quantum embeddability

Stochastic evolution generated Py = (1|€(7)7])|#), with {|i)} denoting the distinguished basis
by a quantum channel:

Markovian quantum channels: ety =LMHOPE), E0)=T
Generator of the evolution: L()=—i[H,- ]+ ®() — %{(I)*(]l)’ 3

Definition 1 (Quantum embeddable stochastic matrix). A stochastic matrix
P is quantum embeddable if

Pij = GlE (17X 14),

where £ is a Markovian quantum channel.
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Power of memoryless quantum dynamics

Unistochastic matrix: P;; = |{j|U|i)|?, where U is unitary
R 1t b ti . Example:
esults/observations P Permuted classically
* All classically embeddable matrices are also o embeddable

quantum embeddable.

All unistochastic matrices are quantum Unistochastic

embeddable.

A product of quantum embeddable matrices is

also quantum embeddable.

S \ A

Classically
embeddable

All 2 x 2 matrices are quantum embeddable.
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Space-time trade-off improvements

D. Wolpert, et al., A space—time tradeoff for implementing a function with master equation dynamics, Nat. Commun. 10, 1-9 (2019)

Definition 2 (Space cost). The space cost of a d x d stochastic matrix P,
denoted Cypace(P), is the minimum m such that the (d+m)x (d+m) embeddable
matrix () implements P.

Definition 3 (Time cost). The time cost Cyme(P,m) of a d X d stochastic
matrix P, while allowing for m memory states, is the minimum number 7 of

one-step stochastic matrices T¥ of dimension (d + m) x (d + m) such that
Q=T ...7M implements P.

One-step stochastic matrix: embeddable stochastic matrix with a time-independent generator™

(n) Wy,
Eg Q=-¢el tn...el" "t is an n-step process

*Actually, in the classical case Wolpert et al. consider a broader notion of a one-step process.
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Space-time trade-off improvements

D. Wolpert, et al., A space—time tradeoff for implementing a function with master equation dynamics, Nat. Commun. 10, 1-9 (2019)

Consider a class of {0, 1}-valued d x d stochastic matrices

107 all _ 232|
Such a matrix Py is defined by a function f: Zg — Z4. 10° fa: classical trade-off
Classical trade-off: % 10°
=
m -+ d — ﬁX(f) = 10* f1: classical trade-off
Ctime(Pfym) > |V .
m +d — [img(f) "
Our result All f: quantum trade-off
10"
For any m > 0 and any function f we have: ‘ ' ' ' ' |

109 102 10? 106 10% 1010
Space cost

imepam §2
Qtime(Fy, m) fili) =i @1, fo(i) = minfi +2%/2,2° — 1)

Quantum advantage for stochastic processes

Singapore, 09/07/2020



Memory advantages in control

Instead on procesess let us focus on state transformations: P—q

Q: Does Markovianity alone restrict our power to perform certain state transformations?
A: No. Simply choose a Markovian process with a unique fixed point q.

Realistically: fixed point of the evolution is constrained,
e.g., to be the thermal state:

. — l —,BEk -—_ d —)BEk
T Ze ? Z T Zk:l €

Yk

ACCESSIBILITY

REGIONS Classical Quantum

With memory Pp=gq, Py=v E(pp) = pg, E(pv) = P

Without memor Pp=gq, Py=~ E(pp) = pq, E(p~y) = py
. P Markovian & Markovian

Where: pp =Y. p; |i)i]
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Memory advantages in control

Classical accessibility regions

A 1
14 3
p P
With memory: known conditions specified by thermo-majorization 01579/ == /13
0.5 | 1
P—q < pry4q 095 | !
(encodes, i.a., the non-increasing of free energy) R

0.25 0.5 0.75 1

Without memory: we introduce & characterize the new notion of Markovian thermo-majorization

1. 7(0) = p,
D >~q <= there exists () such that: 2. Vti,t2 € [0,t5): 11 <to = 7(t1) =4 7(t2),
3. r(ty) =q.
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Memory advantages in control

Quantum accessibility regions

Maximal quantum advantage for uniform fixed points:

All states that can be classicaly (with memory) achieved from p
can also be achieved by quantum evolution without memory

Maximal quantum advantage for general fixed points
for two-level systems:

All states™ that can be classicaly (with memory) achieved from p can

also be achieved by quantum evolution without memory

*Actually even stronger results holds: the set of all quantum states that can be achieved via quanutm
channels with a given fixed point, can be achieved in a Markovian way.

[1X1]
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Outlook

Derive more stringent conditions for quantum embeddability

Extend space-time trade-off analysis beyond {0,1}-valued stochastic processes

Find physical realisations of qubit Lindbladians providing maximal quantum advantage
Investigate practical advantages for near-term quantum devices

Establish a stronger link between stochastic thermodynamics and resource theories
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