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Motivation

Foundations Applications
Strong evidence that quantum computing is Characterization, verification, and
more powerful than classical computing. validation of near-term quantum devices

What component of quantum theory is
responsible for this quantum speed-up?

 Entanglement?
e (Coherence?
* Contextuality?
* Wigner negativity?
* Special combination of the above?
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2. Background a. (Qu)bits
b. Universal sets of (quantum) gates

c. Simulating quantum circuits
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Background:

(Qu)bits
1 bit: 1 of 2 states {0, 1}
1 qubit: linear combination of 2 basis states {|0), |1)}
1Y) = ¢0|0) + c1]1) Probability of measuring |i): p; = |¢;|?

Useful parametrisation: [1)) = cos £|0) + € sin £]1)

n bits: 1 of 2" states {0,1}*"
E.g. 01 or 11

n qubits: linear combination of 2" basis states {|0), |1)}®"
E.g. [¥) = cl00) + c01]01) + ¢10/10) + 11]11)
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Background:

Universal sets of (quantum) gates

Classical gate: mapping between n and m bits

a—>—a®d1 Z:Da@b@ab Z:D—ab
OR

Quantum gate: unitary matrix U transforming a state vector |¢) to U|)

2-qubit gate: CNOT

a) a)
) i b D a)

L/

General 1-qubit gate

] [97901 Of] -

Rotation around axis n = (0, ¢) by angle « E.g. |00) + |11) CNOT,

00) + |10)
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Background:

Simulating quantum circuits

0) 7
Strong simulation
n input 0) U A measuring &
qubits : : m qubits Calculate py(s)
0) A
Weak simulation
circuit composed of Sample from py(s)
1-qubit gates & CNOT's
, S , , Our simulation
Prob. of measuring qubit 1 in state si,..., qubit m in state s,,:

Estimate py(s)
pu(s) = |[(5182...5,|U[0102...0,)|5
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3. Simulating Clifford + T circuits a. Pauli gates and stabiliser states
b. Clitford gates and Gottesmann-Knill
c. Step 1: Gadgetizing T gates
d. Step 2: Stabilizer decompositon
e. Step 3: Sampling stabilizers

f. Step 4: Fast norm estimation
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Simulating Clifford + T circuits

Pauli gates and stabiliser states

1-qubit Pauli gates:

/(0 1 (0 —i (1 0
92 =11 0 Y= \i 0 9= \o -1

n-qubit Pauli gates: E.g. 0, ®0, ®1® 0, (only £1 eigenstates)

n-qubit stabilizer state: simultaneous eigenstate of n commuting Pauli matrices

E.g. [0) <> {0,} or |00) + |11) <> {0, ® 0,,0, R 0}

Classical simulations of quantum circuits



Simulating Clifford + T circuits

Clifford gates and Gottesmann-Knill theorem

n-qubit Clifford gate C': for a Pauli operator P, CPC" also a Pauli operator

(Generators:

%

S — (1 Q) CNOT
0 =

Gottesmann-Knill theorem: evolution of stabiliser states through Clitford circuits
can be efficiently described on a classical computer.

(n-qubit stabiliser state described by n Pauli operators, each of them is mapped by a
Clifford gate to another Pauli operator. Just keep track of stabilisers.)
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Simulating Clifford + T circuits

Clifford gates and Gottesmann-Knill theorem

Clifford gates are not universal!

Adding a single T gate is enough!

U < U’

(general circuit) With arbitrary : (Clifford+T
circuit)

accuracy
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Simulating Clifford + T circuits

Step 1: Gadgetizing T gates with magic states

n input
qubits

S 1
l 0,1 |A) = V2
[A)—D—
b I VN U
: (Clifford + T : |
‘ 0> circuit) /Myﬂ Precisely

Classical simulations of quantum circuits

n input
qubits

t magic
qubits

| A)—| (Clifford — (0

arXiv:1601.07601

0)— 7
V .
0)— — 7

circuit)
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Simulating Clifford + T circuits

Step 2: Stabilizer decomposition of magic states

Non-unique stabilizer decomposition of |A)

|A) = 0) + e?l'n/4|l>) — oz]f)) s a*|1> o — l—l—i(\2/§—1)

1
/3
(]0) + |1))  Stabilizer state stabilized by o,

1
V2
1) = %( 0) + 1)) Stabilizer state stabilized by o,

t magic | = |A® = (a]0) + o*|1)® = Z at~lel(gr)lal|g)

qubits »
- ‘A)— ac{0,1}

Due to linearity may evolve each stabilizer term separately.
But there are 2' terms!
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Simulating Clifford + T circuits

Step 3: Sampling from stabilizer decomposition

Instead of computing each of 2! stabilizer terms |a) we will:

 Uniformly sample 27" terms |a) with v &~ 0.228

* Use Gottesmann-Knill to evolve each term : 0) A
n mput | . V .

, , . , qubits ' :
* Project (n + t)-qubit stabilizer to obtain 0) — | A
(n — m)-qubit unnormalized Stajb.lhzer ey (Cliflord | — ()

arXiv:1601.07601 t magic ‘ circuit)

bt i . :

Why this value of v? v = log,(|a| + |a*|)? DI a) — (0]

Why 27t is enough? Hoeffding’s inequality.
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Simulating Clifford + T circuits

Step 4: Fast norm estimation

We are left with S = 27" unnormalized stabilizer states |U;)

Length of the sample average is the estimated probability:

2

Employ the efficient stabilizer norm estimation from arXiv:1601.07601

~ —4
Final run-time of the algorithm: Texp ™ 0, (271;75361;01;)
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4. Unified simulation framework
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Unified simulation framework

Various splittings into free (efficiently simulable) theory and
resourceful (exponentially hard to simulate) operations:

« (lifford + T gates

* (Gaussian gates + Non-gaussian gate

 Matchgate circuits + SWAP gate

¢« Gadgetization -\

Decomposition of
resource states into
free states

Sampling from free-
state decomposition

Estimating
probability
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Outlook

New Quantum Resource Group established at Jagiellonian University
(leader + 2 post-docs + 2 PhD students + MSc student)

Objective 1: A unified framework for classical simulations of quantum circuits

1. Developing a unified scheme for classical simulation of universal quantum
circuits based on a three-step algorithm.

2. Devising novel algorithms with improved run-time scaling by employing
alternative free element decompositions (e.g. pure free states). Implementing
these algorithms on classical computers and employing them to certify and

verity NISQ devices.

3. Investigating the interconversion problem for the resource theory of magic
states.
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